Szemerédi's regularity lemma revisited

نویسنده

  • Terence Tao
چکیده

Szemerédi’s regularity lemma is a basic tool in graph theory, and also plays an important role in additive combinatorics, most notably in proving Szemerédi’s theorem on arithmetic progressions [19], [18]. In this note we revisit this lemma from the perspective of probability theory and information theory instead of graph theory, and observe a slightly stronger variant of this lemma, related to similar strengthenings of that lemma in [1]. This stronger version of the regularity lemmawas extended in [21] to reprove the analogous regularity lemma for hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szemerédi's Regularity Lemma for Matrices and Sparse Graphs

Szemerédi’s Regularity Lemma is an important tool for analyzing the structure of dense graphs. There are versions of the Regularity Lemma for sparse graphs, but these only apply when the graph satisfies some local density condition. In this paper, we prove a sparse Regularity Lemma that holds for all graphs. More generally, we give a Regularity Lemma that holds for arbitrary real matrices.

متن کامل

A tight lower bound for Szemerédi's regularity lemma

Addressing a question of Gowers, we determine the order of the tower height for the partition size in a version of Szemerédi’s regularity lemma.

متن کامل

Szemerédi's Regularity Lemma via Martingales

We prove a variant of the abstract probabilistic version of Szemerédi’s regularity lemma, due to Tao, which applies to a number of structures (including graphs, hypergraphs, hypercubes, graphons, and many more) and works for random variables in Lp for any p > 1. Our approach is based on martingale difference sequences.

متن کامل

A proof of the stability of extremal graphs, Simonovits' stability from Szemerédi's regularity

The following sharpening of Turán’s theorem is proved. Let Tn,p denote the complete p– partite graph of order n having the maximum number of edges. If G is an n-vertex Kp+1-free graph with e(Tn,p) − t edges then there exists an (at most) p-chromatic subgraph H0 such that e(H0) ≥ e(G)− t. Using this result we present a concise, contemporary proof (i.e., one using Szemerédi’s regularity lemma) fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Contributions to Discrete Mathematics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2006